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Section A: Business and Activities  

(a) Contract Activities 

• Contract Modifications: N/A   

• Educational Activities:  

o Student mentoring:  

Mohsin Ali Khan, a Ph.D. student in Civil Engineering at North Dakota State University, 

began working on the project in the second quarter.  

Student internship: N/A 

Zahoor Hussain, partially collaborating on Dr. Ying Huang’s CAAP project, is a Ph.D. student 

in Civil Engineering at North Dakota State University. He also joined the project in the second 

quarter. 

Student internship: N/A 

Xuanyu Zhou, a master’s student in Civil Engineering at North Dakota State University, 

started contributing to the project in the second quarter. 

Student internship: N/A 

Allison Fleck, an undergraduate student in Civil Engineering at North Dakota State 

University, began working on the project in the second quarter. 

Student internship: Related to pipelines and water during Summer 2024. 

Wentao Ma, a Ph.D. student in the Department of Aerospace and Ocean Engineering at 

Virginia Tech, commenced work on the project in the first quarter. 

Student internship: N/A 

Noah Eilers, an undergraduate student in the Department of Aerospace and Ocean 

Engineering at Virginia Tech, started working on the project in the second quarter. 

Student internship: N/A 

o Educational activities:  

During the spring semester of 2024, Dr. Lin (PI) and his team organized an engineering series 

for high school students (approximately 100 students), introducing them to various 

engineering structures, including pipelines. This series is scheduled to continue through the 

spring and into the summer semester of this academic year. 

o Career employed: N/A 

o Others: N/A 

• Dissemination of Project Outcomes:  
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Publications (+ advised student, * corresponding author) 

Li Shang+, Zi Zhang+, Fujian Tang, Qi Cao, N. Yodo, Hong Pan+, Zhibin Lin* (2024). "Deep 

Learning Enriched Automation in Damage Detection for Sustainable, Resilient Operation in 

Pipelines with Welding Defects under Varying Embedment Conditions." Computation; 

accepted. 

Li Shang+, Zi Zhang+, Fujian Tang, Qi Cao, Hong Pan+, Zhibin Lin* (2024). "Signal 

Processing of Ultrasonic Guided Waves for Damage Detection of Localized Defects in Plates: 

From Shallow Learning to Deep Learning." Journal of Data Science and Intelligent Systems; 

accepted. 

• Citations of The Publications: N/A 

• Others: 

(b)  Financial Summary 

• Federal Cost Activities: 

o PI/Co-PIs/students involvement: 

Meeting Schedule: The research team, including PI Dr. Lin, Co-PIs Dr. Wang, Dr. Pan, 

and Mr. Anderson, along with the students, meet bi-weekly during the first year. 

Task Supervision: Each PI supervises their respective teams to ensure the tasks are 

executed as planned. 

o Materials purchased/travel/contractual (consultants/subcontractors):  

Testbed Development: Co-PI Mr. Anderson from EERC is responsible for planning and 

designing the testbed for accelerated pipeline testing in hydrogen environments, which 

also includes securing the required materials. 

• Cost Share Activities: 

o Cost share contribution: 

The cost share is covered by contributions from NDSU and Virginia Tech, such as 

faculty academy hours (from Dr. Lin and Dr. Wang) and RA tuition waivers for several 

Ph.D. students. 

Budgetary Considerations: 

A detailed cost breakdown by category is presented in the budget proposal (refer to 

Table 1). However, due to delays in budget processing from Virginia Tech and EERC, 

actual expenses may vary from the initially planned budget. 
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Table 1 Cost breakdown during the reporting period (second year) 

Category Amount spent during the second year 

Personnel  

Faculty $10400 

Postdoc $40,800 

Students (RA and UR) $18,500 

Benefits $24,015 

Operating Expenses  

Travel $4,000 

Materials and Supplies $0 

Recharge Center Fee $0 

Consultant Fee $0 

Subcontracts Subawards issued 

Indirect Costs $93,515 

(c) Project Schedule Update 

• Project Schedule:  

Table 1. Schedule of the proposed project and progress. 

Tasks (Milestones) 
Year 1 Year 2 Year 3 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Task 1 (Milestone 1)  √            

Task 2 (Milestone 2)  √ √ √ →         

Task 3 (Milestone 3)  √ √ √ √ √ √ √     

Task 4 (Milestone 4)  √ √ √ √ √ →      

Task 5 (Milestone 5)     √ √ √ √     

Task 6 (Milestone 6)      √ √ √     

Task 7 (Milestone 7) √ √ √ √ √ √ √ √     

√ Finished, → Ongoing.    

Building on the proposed methods, we are continuously refining Task 2 to further explore 

research-oriented avenues, aiming to enhance the robustness of decisions regarding the 

repurposing of existing pipelines. This will not affect the progress of other tasks. Our multi-

scale simulation model Task 4 is nearing completion; however, we are still actively 

conducting simulations for validation purposes, both for experimental results and mitigation 

strategies.  

• Corrective Actions: N/A 

(d) Status Update of the 8th Quarter Technical Activities 

Task 2.1: Develop a risk assessment model for the pipeline under hydrogen effects.  

During this quarter's research period, we concentrated on refining the entire framework for 

evaluating the suitability of pipelines for hydrogen transport. Given the diverse perspectives 

on suitability evaluation, we have developed a comprehensive framework that integrates these 
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perspectives as shown in Figure 1. Each perspective is represented as an expert model, and 

we employ a mixture of expert gating mechanisms to dynamically adjust the selection and 

importance of each model. This approach provides a holistic evaluation of the existing 

pipelines' potential for repurposing to hydrogen transportation. 

 

Figure 1. The robust framework for suitability evaluation 

Task 3.1: Build Near real-world testbed.  

During this quarter, the team led by Mr. J. Anderson from EERC has made significant progress 

in preparing the near real-world testbed for hydrogen testing. The design and manufacturing 

of material-level testing coupons are still in progress. These coupons will be crucial for 

assessing the performance and durability of materials under hydrogen exposure, providing 

vital insights for the broader implementation of hydrogen-based technologies. 

In addition, the key equipment and infrastructure necessary for the testing setup have been 

successfully installed, and additional safety-related assessments are being finalized to ensure 

full compliance with rigorous safety standards. 

Task 4.1: Understanding of long-term hydrogen impacts on materials and welding requirements 

in realistic environments through experimental study 

During this reporting period, the Virginia Tech team, led by Dr. K. Wang, has made 

considerable strides in several critical areas of their research. First, the team has been actively 

developing and validating an advanced incompressible fluid dynamics solver. This solver is 

designed to enhance the precision of simulations involving incompressible fluids, a key aspect 

in understanding the behavior of gases like hydrogen under various flow conditions. The 

successful validation of this solver ensures its reliability and sets a foundation for further 

applications in hydrogen-related studies. 

In addition, the team is conducting an in-depth review of the existing hydrogen transport 

computational model. This review aims to refine the model to better capture the complexities 

of hydrogen transport, particularly under conditions that may affect material performance, 

such as diffusion, permeation, and adsorption. By improving this model, the team hopes to 

gain deeper insights into the interactions between hydrogen and pipeline materials, which is 
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crucial for predicting potential degradation mechanisms. 

Moreover, the Virginia Tech team is addressing the long-term effects of hydrogen on 

materials. Specifically, they are simplifying the simulations of hydrogen's impact by focusing 

on fracture mechanics. This approach involves streamlining the modeling process to better 

understand how hydrogen contributes to fracture propagation and other structural failures over 

time. By reducing the complexity of these simulations, the team will efficiently evaluate the 

long-term risks posed by hydrogen to infrastructure, particularly in scenarios where hydrogen 

embrittlement and stress corrosion cracking may be concerns. 

Task 5.1 Determine the impacts on component- and system-level pipelines. 

During this quarter’s research, we focused on aggregating the system-level impact of 

individual components. While system performance is often evaluated by summing the effects 

of each component, the overall system is influenced by more than just the sum of its parts. 

Complex interactions between components, operational conditions, and external factors play 

a significant role. As a result, it is essential to adopt a comprehensive modeling approach that 

integrates multiple variables at both the component and system levels. This model should 

incorporate a Remaining Useful Life (RUL) framework, accounting for the degradation and 

performance of individual components while capturing system-level dependencies and 

emergent properties. By doing so, we can achieve a more accurate and holistic evaluation of 

pipeline integrity and performance over time, enabling a robust risk assessment and informed 

decision-making process for pipeline maintenance and repurposing. 

The RUL can be defined as the number of working Cycles, or the time left at a particular 

operating time as shown in Figure 2. RUL is the time between the point of measurement and 

the Functional Failure of the asset.  P-F Curve is the graphical representation of an item’s 

Resistance to Failure against Time. The curve expresses two effects (i) Each failure is 

preceded by a symptom (In case of a pipeline, what would be these symptoms, like what 

would be the measurable factors that can be considered as a symptom); (ii) Resistance 

degrades over time. As presented in Figure 2, on the P-F curve the potential failure point (PF) 

indicates the point where the symptoms of a future failure are detected. The age of the system 

goes into the functional failure (FF) stage where the resistance becomes unsatisfactory. The 

age of the component between PF and FF is known as P-F interval.  

After the functional failure point the unsatisfactory performance of the pipeline starts and thus 

the time taken by the pipeline to reach FF is their useful life. In other words, it is the time for 

which the pipeline functions satisfactorily. 
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Figure 2. Graphical analysis of resistance to degradation of a system with respect to pipeline age 

In case, we measure the useful life of a pipeline left (till it functions satisfactorily - FF) from 

a different point on the curve instead of the PF, then the P-F interval becomes RUL. For 

example, the RUL of a pipeline (whose life is 30 years), can be measured from the currently 

observed time (t) until the unsatisfactory working condition starts (FF point). RUL and P-F 

interval converge when the observation point indicates the start of the potential failure of the 

pipeline.   

Because of the variations in historical data raised from different conditions, operational 

factors, and design parameters, every point on the P-F curve indicates the probability 

distribution (PDF). Therefore, when the P-F curve is repeated, it will show the distribution of 

curves, and thus the functional failure point will also be the distribution. The measurement of 

the time interval between two distributions results in another distribution. As a result, the RUL 

of the pipeline asset can be characterized by a range of possible values associated with a 

certain probability of occurrence. 

Predictions inherently include uncertainty, and the curves illustrated above show the 

quantification of this uncertainty. The benefit of using predictive algorithms is that as the 

availability of data increases over time, the level of uncertainty diminishes. Therefore, the 

RUL prediction is uncertain at the beginning of a pipeline's lifecycle but becomes precise as 

the pipeline approaches functional failure. Concisely, it is advantageous to use the median of 

the RUL distribution as a single representative value of the estimate. Considering the 

probabilistic distribution, the RUL can be defined as “The probabilistic estimate of the 

duration over which the pipeline is expected to continue performing its intended function 

under specified conditions.” An accurate estimation of RUL is the first step in effective asset 

management. It is highly recommended that the maintenance strategies must incorporate RUL 

estimates along with other operational factors to align with a broader framework aimed at 
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optimizing the pipeline performance and lifecycle management. 

The temperature versus time chart is shown in the Figure 3, several data points can be 

observed, represented by dots. These data points allow for the extrapolation of the trend in 

temperature progression. If the critical temperature threshold is known, it can be easily 

anticipated when the system is approaching a critical event. This method facilitates the 

extrapolation, estimation, or prediction of the pipeline end-of-life (EOL) and the RUL is 

simply the difference between the current time and the predicted EOL. It is noteworthy that 

RUL can be estimated at multiple time intervals, which means that there is not a singular RUL 

but rather a series of RUL estimates over time, which evolve when fresh data becomes 

available. 

 
Figure 3. Generalized flow diagram of RUL estimation of a component/system 

The generalized flow diagram for the RUL estimation is presented in Figure 3. Which involves 

several steps, which are explained in the next sections.  

 
Figure 4. Different stages involved in the RUL estimation of component/system using artificial 

intelligence-based modeling 
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Task 6.1 Propose guidelines/best practices 

To provide effective guidance on best practices for repurposing existing pipelines for 

hydrogen transportation, our team conducted a comprehensive literature review and 

summarized the key considerations as follows: 

The methods for hydrogen mitigation when transforming existing pipelines primarily focus 

on addressing hydrogen’s unique properties, such as material vulnerabilities and associated 

safety risks: 

a) Material Compatibility: Evaluate the pipeline materials for susceptibility to hydrogen 

embrittlement, which can lead to material degradation through hydrogen-induced cracking. 

Apply protective coatings or replace vulnerable sections with materials that are resistant to 

hydrogen permeability and degradation. 

b) Flow and Pressure Adjustments: Due to hydrogen's lower density compared to natural gas, 

pipeline pressure and flow dynamics must be adjusted to ensure both efficiency and safety. 

This includes implementing measures to prevent over-pressurization, which could 

compromise pipeline integrity. 

c) Safety Enhancements: Given hydrogen’s propensity to leak, advanced leak detection 

systems such as infrared, ultrasonic, or fiber-optic sensors should be employed. Additionally, 

fire suppression systems and explosion-proof designs are critical to mitigating hydrogen's high 

flammability risk. 

d) Control Systems: Implement hydrogen-specific sensors and real-time monitoring systems 

for key parameters like pressure, temperature, and leak detection. Upgrades to SCADA 

systems should include automatic shut-off mechanisms to enhance safety in the event of leaks 

or other issues during hydrogen transport. 

e) Testing and Certification: Begin with hydrogen blending (a hydrogen-natural gas mix) to 

test and assess pipeline integrity before transitioning to pure hydrogen. Follow established 

standards, such as ASME B31.12, which are specifically designed for hydrogen pipelines to 

ensure system safety and reliability. 

f) Regulatory and Environmental Compliance: Conduct thorough environmental assessments 

to monitor potential hydrogen emissions and ensure compliance with regulatory standards. 

Collaborate with relevant authorities to align the pipeline transformation with hydrogen 

transportation safety regulations. 

g) Personnel Training and Maintenance: Provide specialized training for personnel to handle 

hydrogen safely and effectively. Additionally, develop enhanced maintenance protocols, as 

hydrogen can accelerate wear and tear on pipeline materials, requiring more frequent 

inspections and upkeep. 

This structured approach will help ensure that pipelines repurposed for hydrogen transport are 

both safe and efficient, while adhering to the necessary technical and regulatory standards. 
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Section B: Detailed Technical Results in the Report Period 

1. Background and Objectives in the 2nd Annual Report Period 

1.1. Background 

The global transition towards a low-carbon future has placed hydrogen at the forefront of 

sustainable energy strategies, particularly as a key enabler for decarbonizing sectors that are 

challenging to electrify. Green hydrogen, produced through electrolysis powered by 

renewable energy sources such as wind and solar, is gaining momentum as a crucial vector 

for reducing carbon emissions in heavy industries like steel and cement manufacturing, as 

well as aviation, maritime transport, and long-term energy storage solutions. In line with the 

European Union's goal of achieving climate neutrality by 2050 [1], hydrogen is anticipated to 

play a substantial role in supplying clean energy to sectors that are resistant to conventional 

electrification due to technical and economic constraints [2]. 

A critical bottleneck in realizing a hydrogen-based economy is the creation of an efficient, 

scalable hydrogen transportation and distribution network [3]. Given the immense costs and 

logistical challenges associated with building a dedicated hydrogen pipeline infrastructure, 

the repurposing of existing natural gas pipelines has emerged as an attractive and 

economically viable solution. This approach leverages the existing pipeline infrastructure, 

significantly reducing capital expenditures and preventing the obsolescence of assets that 

would otherwise become stranded. 

However, the technical complexity of this approach cannot be overstated. Hydrogen has 

unique physical and chemical characteristics that differ markedly from natural gas, and these 

properties introduce a range of engineering challenges [4]. Hydrogen molecules are much 

smaller than methane molecules, increasing the likelihood of leakage through even minute 

imperfections in the pipeline material. More critically, hydrogen is highly prone to 

embrittlement, a phenomenon in which the interaction of hydrogen with certain metals, 

particularly pipeline-grade steels, degrades the material's mechanical properties, making it 

more susceptible to crack initiation and propagation under stress [5]. 

To ensure the safe and efficient transport of hydrogen through repurposed pipelines, several 

key technical issues must be addressed. First, the pipeline materials must be assessed for 

hydrogen compatibility. This requires an in-depth evaluation of the microstructural properties 

of the steels currently used in natural gas pipelines, with particular attention to their 

susceptibility to hydrogen-induced cracking (HIC) and hydrogen embrittlement (HE) [5]. 

Advanced metallurgical analysis, including fracture mechanics studies, fatigue testing, and 

accelerated aging simulations under hydrogen exposure, are necessary to predict the long-

term performance of these materials. 

In addition to material compatibility, the repurposing process must account for operational 

parameters such as pressure, flow rate, and pipeline diameter, all of which impact the 

economic viability of hydrogen transport. Hydrogen's lower volumetric energy density 

compared to natural gas means that higher flow rates or increased pressure may be required 

to deliver the same energy output, potentially stressing pipeline systems beyond their original 

design specifications. Computational fluid dynamics (CFD) simulations, coupled with 
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thermodynamic and mechanical stress analyses, are essential tools for optimizing the 

operational conditions of repurposed pipelines while ensuring structural integrity. 

Another layer of complexity arises from the need to ensure safe pipeline operation in varying 

environmental conditions. Pipelines traversing regions with fluctuating temperatures or 

seismic activity may experience differential stress, exacerbating the risks associated with 

hydrogen embrittlement. Incorporating real-time monitoring systems using advanced sensors 

for detecting leaks, pressure drops, and material fatigue can provide early warnings of 

potential failures, allowing for proactive maintenance and risk mitigation. 

Economic considerations also play a significant role in the decision-making process. The cost-

effectiveness of repurposing versus constructing new hydrogen pipelines must be evaluated 

through a comprehensive life-cycle cost analysis (LCCA) [6]. This analysis involves not only 

upfront capital expenditures but also long-term maintenance, retrofitting costs, and 

operational efficiency. Public acceptance, regulatory frameworks, and environmental 

considerations further complicate the repurposing process, necessitating stakeholder 

engagement and policy alignment to ensure the project's long-term success. 

Our current efforts are focused on developing an integrated decision-support framework that 

synthesizes these technical, economic, and regulatory factors. This framework leverages 

machine learning algorithms and data-driven risk models to evaluate the fitness of pipeline 

segments for hydrogen transport. By incorporating real-time data from monitoring systems 

and simulations, the framework will enable dynamic risk assessments and optimize decision-

making for pipeline repurposing projects. Furthermore, we are exploring the use of knowledge 

graph-based approaches to map the relationships between material properties, environmental 

conditions, and operational factors, providing a more comprehensive understanding of the 

risks and opportunities involved in repurposing natural gas pipelines for hydrogen transport. 

In summary, the transition to a hydrogen economy hinges not only on the production of green 

hydrogen but also on the development of a robust, efficient, and safe transportation 

infrastructure. Repurposing existing natural gas pipelines offers a cost-effective solution, but 

it requires overcoming significant technical challenges related to hydrogen's unique 

properties. Through a multidisciplinary approach that combines advanced materials science, 

computational modeling, real-time monitoring, and economic analysis, we aim to build a 

comprehensive framework to guide the safe and efficient transformation of existing pipeline 

infrastructure for hydrogen transport, thus accelerating the global shift towards a sustainable 

energy future. 

1.2. Objectives in the 2nd Annual Report Period 

In the second year of our project, we successfully met several key objectives as outlined in 

the 2nd annual report. Our primary focus was to assess the feasibility of utilizing existing 

pipelines for hydrogen transport through an extensive evaluation that incorporated theoretical 

modeling, simulation studies, and experimental testing. The following milestones were 

achieved: 

a) Completed Development of the Decision Model Framework and Formulated a 

Comprehensive Decision Model (Task 2.1): 

During this phase, we finalized the construction of the decision model framework, which 
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integrates key parameters essential for evaluating the repurposing potential of existing 

pipelines for hydrogen transport based on graph-based feature properties. This comprehensive 

model incorporates a wide range of factors, including material properties, hydrogen-induced 

risks, operational conditions, and economic considerations. By leveraging a mix of expert 

gates and different “experts” perspectives, including, fracture mechanics, statistical remailing 

useful life, and causal graph-based model, the framework provides a robust, multi-criteria 

decision-making tool that facilitates the assessment of pipeline fitness for hydrogen use. The 

model will be instrumental in guiding future decisions on retrofitting pipelines and optimizing 

safety, cost efficiency, and performance. 

b) Summarized and Building a Machine Learning-Based Remaining Useful Life Model for 

Repurposing Pipelines for Hydrogen (Task 2.1): 

We have summarized various methodologies for predicting the remaining useful life (RUL) 

of pipelines repurposed for hydrogen transport. These methodologies include machine 

learning models, statistical models, and first-principles logic-based approaches. We are also 

working on developing a comprehensive model that integrates historical data, material 

degradation characteristics, operational stress factors, and the specific impact of hydrogen on 

pipeline integrity. The RUL model is intended to support proactive maintenance strategies, 

facilitating more accurate lifecycle management and reducing the likelihood of unexpected 

failures. 

c) Designed and Implemented an Advanced Near-Real-World Testbed for Hydrogen Effects 

Analysis (Task 3.1): 

We have designed and implemented an advanced near-real-world testbed aimed at analyzing 

the effects of hydrogen on pipeline infrastructure. This testbed simulates operational 

conditions to assess material degradation, stress responses, and the overall performance of 

pipelines repurposed for hydrogen transport. By closely replicating real-world scenarios, the 

testbed provides valuable insights into the long-term impacts of hydrogen exposure on 

pipeline materials. The results from these tests will inform the development of safer and more 

reliable pipeline systems, ultimately contributing to the optimization of hydrogen transport 

infrastructure. 

d) Developed Multi-Scale Simulation Models for Fundamental Understanding of Hydrogen 

Effects (Task 4.1, Task 4.2): 

Complex simulation models were successfully developed and validated during this reporting 

period, providing deeper insights into how hydrogen impacts pipeline integrity. Under the 

leadership of Dr. K. Wang, the Virginia Tech team focused on Tasks 4.1 and 4.2, which 

involved developing an incompressible fluid dynamics solver and reviewing existing 

hydrogen transport computational models. These intricate models allow for the exploration of 

hydrogen's behavior within the pipeline structure, contributing to a more profound 

understanding of long-term material degradation and enabling more accurate predictions and 

mitigation strategies for hydrogen transport systems’)  

e) Determine the impacts on component- and system-level pipelines (Task 5.1, Task 5.2): 

During this phase, the research team developed a comprehensive framework to assess the 

impact of hydrogen on existing pipelines, focusing on critical factors like stress corrosion 

cracking (SCC) and hydrogen embrittlement (HE). The knowledge graph-based model 
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evaluates both component- and system-level risks, considering material properties, weld 

quality, and surface conditions that influence susceptibility to hydrogen-related degradation. 

At the system level, corrosion and HE can lead to cascading failures, highlighting the need for 

robust monitoring and risk mitigation. This framework equips stakeholders with tools to 

optimize pipeline retrofitting for hydrogen transport, balancing safety, cost, and performance. 

f) Propose guidelines and best practices for transitioning existing pipelines to support 

hydrogen transportation. (Task 6.1, Task 6.2): 

We have synthesized essential guidelines and best practices to ensure a safe, efficient, and 

cost-effective transition of existing pipelines for hydrogen transport, anchored in a 

comprehensive integrity-driven framework. This approach emphasizes thorough assessments 

of mechanical properties, material integrity, and defect susceptibility, addressing critical risks 

such as stress corrosion cracking (SCC) and hydrogen embrittlement (HE). Key control 

measures, integrating mechanical, metallurgical, and environmental strategies, are 

recommended to mitigate these risks, along with regular inspection regimes and advanced 

nondestructive testing for early vulnerability detection. Additionally, tailored conversion 

roadmaps and integrity management plans are designed to balance safety, operational 

performance, and economic feasibility, optimizing the use of existing infrastructure for 

hydrogen transport while addressing emerging integrity challenges. 

1.3. Experimental Design 

During this annual reporting period, the research team, led by Mr. J. Anderson from the 

Energy & Environmental Research Center (EERC), has made significant progress in preparing 

a near real-world testbed for hydrogen effects analysis. The experimental setup involves 

critical steps to ensure safe and reliable hydrogen testing under controlled conditions. The 

team has established key equipment and allocated space for the testbed, with ongoing safety 

checks to ensure compliance with required standards. 

Procurement and Fabrication: 

The EERC has secured a quote from STEFFES for the procurement and specialized welding 

of the pipeline. The University of North Dakota (UND) procurement team is processing the 

work order, which is expected to be sent to STEFFES by early July. 

For gas blending, the team has opted to purchase a pre-blended hydrogen/natural gas K-bottle 

from a distributor, such as Airgas, to maintain precision in gas composition rather than 

blending gases on-site in an accumulator. 

Testbed Layout and Infrastructure: 

The General Arrangement Drawing (GAD) for the testbed layout has been completed in 

collaboration with the facilities team. The designated test site is located in Building R, within 

the National Center for Hydrogen Technologies (NCHT), contingent on access to natural gas 

lines. 

The pipeline infrastructure uses API 5L X52 piping with SCH80 specifications. The primary 

materials for testing are API 5L X52 and 316 stainless steels, chosen for their compatibility 

with hydrogen transport. 

Instrumentation and Safety: 
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The Process and Instrument Diagrams (PID) have been updated incorporating a Mass Flow 

Controller (MFC) to regulate flow to the thermal oxidizer (TOx). This configuration ensures 

safe depressurization and enables temperature control, protecting the internal refractory of the 

system. 

Materials for pipeline fabrication are being sourced from existing stock to minimize 

procurement costs. To ensure safety, the team is collaborating with local welding experts to 

verify pressure calculations and confirm the suitability of SCH80 piping. Alternative materials 

are under consideration, if necessary, based on final safety evaluations. 

This experimental design serves as a critical step in establishing a robust testbed for hydrogen 

testing, which will contribute to the comprehensive evaluation of hydrogen’s impact on 

pipeline infrastructure. 

 

Figure 5. The layout of EERC facilities for hydrogen testing 
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Figure 6. The updated piping and instrumentation diagram for the near real-world testbed 

1.4. Testing procedure 

For the testing procedure, we will conduct both pressure cycling and coupon testing. Coupon 

samples will be placed inside the pipeline to evaluate material degradation and response to 

hydrogen exposure. The following main steps outline the best approach to achieving reliable 

and insightful results: 

a) Pressure Cycling Testing:  

i. Apply pressure cycling to the system according to predetermined cycles that mimic real-

world operating conditions, including pressure variations and surges commonly experienced 

in hydrogen transport.  

ii. Continuously monitor the system’s mechanical performance and behavior under varying 

pressure conditions, particularly focusing on stress points where hydrogen embrittlement may 

occur. 

b) Hydrogen-Induced Stress Scenario Simulation:  

i. Simulate specific hydrogen-induced scenarios such as hydrogen embrittlement, leaks, or 

permeation, by gradually introducing hydrogen into the pipeline at controlled levels.  

ii. Monitor and record the system’s response to these stressors in real time, using embedded 

sensors to detect early signs of material failure or degradation. 
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c) Comprehensive Data Collection and Analysis:  

i. Collect extensive data from pressure cycles and hydrogen-specific stress scenarios using 

high-precision sensors, NDE tools, and wireless monitoring networks.  

ii. Ensure that data includes temperature, pressure, material strain, and any detected 

anomalies, allowing for a multi-dimensional analysis of system performance. 

d) System Integrity and Performance Evaluation:  

i. Analyze the gathered data to assess the system’s overall integrity, focusing on precision, 

sensitivity, reliability, and the material's resilience to hydrogen exposure.  

ii. Compare the observed data to expected theoretical outcomes to validate the system’s 

reliability and pinpoint areas of potential failure. 

e) Industry Consultation and Expert Validation:  

i. Consult with subject matter experts (SMEs) and representatives from the pipeline industry 

to validate the testing procedure and outcomes, ensuring practical relevance.  

ii. Gather feedback on system performance and recommendations for refining the testing 

protocols to further optimize the testbed for future hydrogen-related research. 

This revised step-by-step procedure focuses on both real-world applicability and hydrogen-

specific challenges, ensuring a thorough assessment of pipeline performance under varying 

operational conditions 

2. Results and Discussions 

2.1. Task 2: Repurposing decision platform formulation 

a) Gaussian process for RUL:  

Figure 7 presents the framework for building a Gaussian process-based machine learning 

model tailored for decision-making in the context of repurposing pipelines for hydrogen 

transport. Gaussian process (GP) regression, a non-parametric probabilistic model, is 

employed to predict various aspects of pipeline performance when subjected to hydrogen. 

This method provides predictions with well-defined uncertainty, which is crucial for making 

informed decisions in the high-risk domain of hydrogen repurposing. 

Mathematically, let X= {𝑥1, 𝑥2, … , 𝑥𝑛} represent the mix design or measured properties as 

inputs for our GP-based machine learning model, where 𝑥𝑖 ∈ ℝ𝑑  is a d-dimensional vector. 

To reduce spurious correlations, we set 𝑑 = 1 . Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}  be the corrosion 

resistance measurements. The Gaussian process model assumes a function 𝑓 that maps the 

input 𝑥𝑖   to 𝑦𝑖 with a mean function 𝜇 and a covariance function 𝑘 (kernel function). The 

distribution of the functions 𝑓 is given by [7]: 

 𝑝(𝑓|𝑋)~𝒩(𝑓|𝝁, 𝒌) (1) 

where 𝑓 = (𝑓(𝑥1), … , 𝑓(𝑥𝑛)), 𝝁 = (𝜇(𝑥1), … , 𝜇(𝑥𝑛)) and 𝒌𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗),  
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In our corrosion resistance prediction scenarios, we assume that the corrosion resistance is 

given by 𝑦 = 𝑓(𝑥) + 𝜖, where 𝜖 represents additive i.i.d measurement noise with variance 

𝜎𝑛
2. Thus, the prediction 𝑓∗  at the new mix design point 𝑋∗is [8]: 

 
(

𝑌
𝑓∗) ~𝒩 (0 [

𝒌 + 𝜎𝑛
2𝐼 𝒌∗

𝒌∗𝑇 𝒌∗∗
]) 

(2) 

where 𝒌 = 𝑘(𝑋, 𝑋),𝒌∗ = 𝑘(𝑋, 𝑋∗)and 𝒌∗∗ = 𝑘(𝑋∗, 𝑋∗).  

The predictive distribution for Gaussian process regression is [9]: 

 𝑓 ∗̂|𝑋, 𝑌, 𝑋∗~𝒩(𝑓 ∗̂, 𝐶𝑂𝑉(𝑓∗)) (3) 

where 𝑓 ∗̂ = 𝒌∗𝑇[𝒌 + 𝜎𝑛
2𝐼]−1𝑌 , 𝐶𝑂𝑉(𝑓∗) = 𝒌∗∗ − [𝒌 + 𝜎𝑛

2𝐼]−1𝒌∗ 

To address the needs of our small datasets and smoothness requirements, we use a modified 

Radial Basis Function (RBF) Kernel, parameterized as [10]:  

 
𝑘(𝑥, 𝑥′) = 𝜃0 ∙ exp (−

‖𝑥 − 𝑥‖2

2𝑙2
) + 𝛼𝐼 

(4) 

where 𝜃0is the scaling parameter, 𝑙 is the length scale, and 𝛼 controls the noise level. The 

hyperparameter 𝜃 = (𝜃0, 𝑙, 𝛼)  can be determined by the existing data and the physical 

properties of the analyzer. The optimal hyperparameters are found by maximizing the 

regularized log marginal likelihood: 

 𝜃∗ = arg max
𝜃

𝑝(𝑌|𝑋, 𝜃) + 𝑅( 𝜃) (5) 

By combining the parameterized kernel and Equation 3, we obtain the Gaussian process-based 

machine learning model. 

 

Figure 7. Gaussian process-based RUL prediction 

b) General ML (shallow learning) for RUL:  

For more general machine learning based prediction model, the typical ML model 

development includes two primary stages: training and prediction. During the training phase, 

the model develops inferential capabilities relying on provided datasets, and progressively 

enhances prediction performance. The tasks done during the training phase involve pre-

processing, learning, and evaluation [11]. The pre-processing converts the inconsistent, 

unstructured, incomplete, and noisy raw data to machine-readable structure for learning 
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process [12], [13]. The learning step involves the selection of an appropriate learning 

algorithm, the tuning of the model’s hyperparameters, and training the model on the subjected 

pre-processed data. The evaluation phase then evaluates the model's performance using 

statistical metrics. After the post-processing, the prediction phase provides the most valuable 

model that can be further used for making predictions using new datasets.  

The ML is divided into three subdomains based on the type of feedback the learning system 

receives: supervised learning, un-supervised learning, and semi-supervised learning [13]. 

Figure 8 presents the taxonomy of ML techniques. 

Supervised Learning 

Supervised learning maps the known independent and dependent features to learn the 

correlation between them. Commonly employed algorithms used in supervised learning 

includes NN, SVM, DT, and k-nearest neighbors. Supervised learning can be used to solve 

regression and classification problems. Regression solves the problems where the dependent 

variable is continuous such as the problems related to estimation of defect sizes and prediction 

of degradation rates in pipeline infrastructure. While classification is commonly employed 

where the variables hold the finite set of discrete value. In pipeline infrastructure classification 

helps in detection of leakage, identification of defect type, and prediction of risk level.  

Unsupervised Learning 

Unsupervised learning aims to identify trends/patterns or concealed features within the 

variables array data without having the prior knowledge of output variables. Clustering is an 

unsupervised learning task that divides the objects into separate clusters, with an aim to group 

the similar objects in single cluster according to the certain predefined criteria [42]. The 

mostly used clustering techniques include hierarchical clustering, K-means clustering, and 

Gaussian mixture models. In pipeline infrastructure, clustering can be used for the 

simplification of risk assessment task like clustering the pipeline segments according to 

degradation mechanisms, materials, and operating conditions. 

Semi-Supervised Learning  

Semi-supervised learning uses the features of both supervised and unsupervised learning and 

utilizes both the labeled and unlabeled data. Semi-supervised learning is recommended when 

a large amount of unlabeled data and less labelled data is available. Furthermore, the 

reinforcement learning algorithms learn the actions in the data more efficiently using a reward 

system, like receiving of rewards and punishments associated to the actions in the data [13]. 

The commonly adopted techniques in reinforcement learning include Markov decision 

processes, Q-learning, and Monte Carlo methods. 
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Figure 8. Overview of machine learning algorithms 

c) Deep learning for RUL:  

Deep learning (DL) [13], a fast-evolving domain within ML, refers to a deep artificial neural 

network comprised of multiple hidden layers. It stands out from normal neural networks due 

to its increased complexity and larger network size and significantly enhance the predictive 

performance. The key networks of DL include Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) networks. 

CNN approach is commonly used for image analysis tasks, with an architecture consists of an 

input layer, convolutional layer, pooling layer, fully connected layer, and output layer, as 

presented in Figure 9. The training dataset, the types arrangements, depth and the chosen 

functions of network layers, define the developed model's accuracy and robustness.  

The pooling (or sub-sampling) layer helps to reduce the dimensionality and compress the 

image information. Popular operations within this layer include average pooling and 

maximum pooling, which help compact the data and prevent overfitting, thus reducing the 

number of neurons in the network. Next, the fully connected layer combines and integrates 

the extracted features with the usage of multilayer perceptron (MLP) as a core network 
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structure. Each input neuron links to an output neuron with designated weights and biases, 

and then an activation function is used to produce the final output. Furthermore, an activation 

function is a supplementary addition during forward propagation, which introduce the non-

linearity to the network, and allows back propagation, which eventually enhances the image 

recognition capabilities of the pooling layer and convolution layer. The most common non-

linear activation function that can be used in CNN are presented in Table x. 

Table x. Non-linear activation function used in hidden layers of CNN network 

Name and 

symbol 

Mathematical 

function 

Purpose Graphical output 

Rectified Linear 

Unit (ReLU) 
𝑓(𝑥)
= max (0, 𝑥) 

Sets all negative 

inputs to zero, 

helps with faster 

convergence 

and addresses 

the vanishing 

gradient 

problem. 

 

Hyperbolic 

Tangent (Tanh) 
𝑓(𝑥)

=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Squeezes the 

input values 

between -1 and 

1, and therefore 

suitable for 

classification 

tasks that 

require outputs 

in a specific 

range. 

 

Sigmoid/logistic 𝑓(𝑥)

=
1

1 + 𝑒−𝑥
 

Maps the input 

values to the 

range of (0, 1), 

and therefore 

suitable for 

binary 

classification 

tasks where 

probabilities 

need to be 

calculated. 

 

After initialization of the network parameters, CNN models go through supervised training, 

which allows forward propagation to extract features through different operations 

(convolution, pooling etc.), and backpropagation modifies the network parameters while 
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comparing the predicted and actual values. Waibel et al., introduced the first CNN, which 

evolved over the decades, with various derived structures and algorithms to successfully apply 

for anomaly classification and defects detection in oil and gas pipeline related tasks. Bastian 

et al. (2019) used CNN with a dataset of 140,000 pipeline images with varying degree of 

corrosion to classify the intensity of corrosion. CNNs have confirmed effectiveness in training 

large-scale networks and tackling big data challenges. Ajmi et al. (2020) used an AlexNet 

based CNN architecture for the classification of defects in welds. Other notable CNN 

architectures include GoogleNet, and VGG.  

RNNs are usually employed in time series prediction. The LSTM emerged as a popular 

extension due to its valuable performance in modeling large-scale data. Ahuja et al. (2021) 

successfully applied Bi-directional LSTM for the classification of images related to pitting 

corrosion in pipelines. Despite the increasing interest in deep learning for oil and gas pipeline 

analyses, the method is still in an exploratory phase due to the extensive data requirements 

involved in the modeling process. 

 

Figure 9. Typical architecture of confidently used CNN algorithm in pipeline network. 

Post-processing 

Post-processing involves the refinement and optimization of the predictions generated by the 

model. After an array of predicted RUL, like 48, 45, or 39 days until failure are obtained, 

various post-processing techniques can be utilized to improve these predictions. Which 

includes the evaluation of the model's performance to assess its accuracy and effectiveness, 

as well as analysis and interpretation of the predictions to ensure they are significant and 

consistent. Through this process, the predictions can be fine-tuned, which can eventually lead 

to improved reliability and better alignment with the underlying data. 

 

Figure 10. Steps involved in post-processing of the RUL models 

Prediction Optimization 

Different models are applied to achieve the estimation of RUL. It is necessary to optimize the 

divergent results of the estimated RUL from various models. The researchers used different 

approaches to fuse the estimated results. Baptista et al. suggested the data-driven based 

Kalman-Filter solution approach. As presented in Figure 11 (a) the RUL was estimated using 

Post Processing
Prediction 

Optimization
Evaluation Metrics Interpretability
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five different methods i.e., GLM, KNN, MNET, RF and SVM. It can be clearly observed the 

scatter and divergence in the estimated RUL, specifically for the KNN model (greenish 

yellow). To address aforementioned issue, the authors employed a Kalman filter, which 

helped to linearize the predictions and increases their dependency. The achieved approach 

smooth predictions ensures that coherence and completely reflective of temporal 

relationships, eventually improves overall predictive accuracy. 

 

Figure 11. (a) RUL estimation using five different models i.e., GLM, KNN, MNET, RF and SVM, (b) 

Fused RUL estimation and linearization using Kalman Filter  

Evaluation Metrics 

The evaluation of the developed model is necessary to ensure that the model is not only good 

only on the training data but also on the testing data that was never seen. Naseer et al. provided 

78 most used metrics for evaluation of classification and regression-based ML models. 

Although statistical metrics like MAE and RMSE are important but not the best way to see all 

the dimensions of the model. As presented in Figure 12, all the three plots have same MAE, 

but the first plot with scattered predictions, the second one with over predictions and the third 

one with over predictions. Only the values of statistics are not enough, and it is equally 

important to visualize performance in different ways.  
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Figure 12. Importance of visualization considering the same MAE with different visualization.  

Interpretability 

In terms of interpretability, ML models, mainly data-driven models, present challenges. These 

models provide predictions, like “40 days to failure”, deprived of how the result was obtained. 

The lack of transparency makes it tough to know the reasons behind such estimations. To 

address this issue, the authors worked on application of explain-ability techniques, like the 

SHAP (Shapley Additive Explanations) model, to improve interpretability through the 

generation of explanations for the predictions. For instance, if the model estimated RUL of 30 

or 50 days, SHAP can find the factors that contributed to the prediction. It might specify that 

a temperature of 20°C was a significant feature, or that pressure accounts for 80% of the 

prediction's outcome, Such approach can provide a notion of what is going on inside the 

model, providing a clear understanding of the factors that influence the predictions. 

2.2. Task 3: Near real world testing 

The EERC has discussed two potential siting spots for the fabrication of the pipeline. The spot 

has been decided upon and deconstruction and cleanup of the unused equipment in the space 

will begin to clear way for the new system. 

An initial HAZOP review has been done, which determined the sitting was adequate, but 

called for some redesigning on the system itself to ensure proper recycling of the gas blend so 

the system won’t inefficiently consume the hydrogen supply to run. Once the PID has been 

updated again, a final HAZOP will occur. 

Material purchasing will begin shortly once the sitting location is cleaned up enough to 

properly store the materials. 

The material to be used for the pipeline is being discussed, as it may end up being a result of 

availability. The original plan is API 5L X52, but the availability of obtaining the small 

amount needed has proven difficult. After consulting with a few members from the EERC 

with experience in pipeline infrastructure, a suitable material used in natural gas transmission 

could also be ASTM A106 SCH40 carbon steel or ASTM A53 SCH40 carbon steel (however, 

this seems to be more for on-site distribution). If possible, the EERC would like to stick with 
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the original plan of API 5L. 

2.3. Task 4:  Long-Term Hydrogen Impacts on Transportation Pipelines 

The Virginia Tech team, led by Dr. K. Wang, has developed a computational model to 

simulate long-term hydrogen absorption in transportation pipes, focusing on the effects of 

surface roughness and defects on hydrogen absorption and material degradation. Key tasks 

include: 

Model Development and Implementation: The team has implemented part of the model in 

their in-house research code, M2C, which utilizes C++, MPI, PETSc, and Eigen. The model 

adopts computational fluid dynamics (CFD) to predict how surface roughness, particularly 

small defects, can act as hydrogen traps that accelerate absorption and material degradation. 

Code Verification: They conducted a verification study for the incompressible viscous flow 

solver in the M2C code, comparing results with OpenFOAM and COMSOL for a benchmark 

test case involving fluid flow past a square cavity. The study confirmed good agreement 

between M2C results and reference software, verifying the accuracy of the solver. 

Hydrogen Transport Modeling: The model was extended to account for the transport of gas 

mixtures (hydrogen, air, impurities), utilizing diffusion coefficients for each species. This 

required extending the conventional Navier-Stokes equations to handle species-specific 

diffusion. 

Benchmark Simulations and Defect Modeling: The team designed various model problems 

by varying the size and shape of pipe defects. Simulations revealed vortex-dominated 

microflows within these cavities, with results validated against previous findings. 

Further Extensions: Plans to incorporate multi-component gas mixtures into the M2C code 

were discussed, allowing the model to handle hydrogen transport in more realistic conditions, 

such as mixtures of hydrogen, air, and impurities. 
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Figure 13. Simulation results obtained from the verification study. Good agreement is obtained between 

results of our in-house research code (M2C) and references obtained using OpenFOAM and COMSOL. 

2.4. Task 5: impacts on component-/system-level pipelines  

During this research period, our investigation into the effects of hydrogen on existing pipeline 

infrastructure revealed key insights, particularly regarding component- and system-level 

factors. Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) are recognized as 

significant factors influencing pipeline integrity. The team's proposed knowledge graph-based 

neural query framework allows for the comprehensive evaluation of these factors, providing 

valuable tools for stakeholders to assess and mitigate hydrogen-related risks. 

a) Component-Level Impacts 

At the component level, specific attributes of the pipeline material, welds, and surface finishes 

are critical in determining the susceptibility to hydrogen-related degradation: 

Stress Corrosion Cracking (SCC): SCC is one of the primary mechanisms driving pipeline 

failures in hydrogen environments. It involves the combined action of tensile stress and 

corrosive environments, which may lead to crack initiation and propagation. The crack 

initiation stage is influenced by material surface quality, such as coarse machining marks or 

weld porosity, which can act as stress concentrators. 
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Hydrogen Embrittlement (HE): HE refers to the reduction in ductility and toughness caused 

by hydrogen absorption in metals. It is exacerbated by the presence of SCC, where hydrogen 

produced during corrosion further weakens the material. This phenomenon is especially 

prevalent in high-strength steels used in pipelines. 

Crack Growth Stages: The crack growth in pipelines follows the Bathtub model, as illustrated 

by the five sequential stages in the SSC crack growth mechanism. Crack initiation (Stages 1a 

and 1b) depends largely on the material quality and external surface conditions, while Stage 

2 represents mechanical forces that accelerate crack growth. Fast rupture occurs in Stage 3, 

emphasizing the need to prevent early crack development. 

b) System-Level Impacts 

At the system level, the broader implications of hydrogen presence and SCC/HE factors are 

considered across multiple interconnected pipeline components and their performance: 

Corrosion as a Dominant Failure Mechanism: According to the Pipeline and Hazardous 

Materials Safety Administration (PHMSA) report (2008–2017), corrosion was responsible for 

63% of pipeline failures. Material, welding, and equipment failures accounted for an 

additional 17%. These failures are often interrelated, as SCC and HE can occur 

simultaneously, weakening the entire pipeline system. 

Hydrogen Embrittlement (HE) in the System: The system-level implications of HE is 

profound, as a single component's failure can lead to cascading failures across the entire 

pipeline network. System-wide monitoring of hydrogen levels and stress conditions becomes 

essential to prevent large-scale pipeline failures. 

In conclusion, the component-level factors (such as surface quality and material defects) and 

system-level factors (such as overall corrosion susceptibility and hydrogen embrittlement) 

need to be rigorously monitored and managed to ensure the integrity of existing pipelines.  

2.5. Task 6: Propose guidelines/best practices  

In this research phase, we aim to summarize comprehensive guidelines and best practices from 

multiple perspectives to facilitate a streamlined and quantitative approach to the complex task 

of repurposing existing pipelines for hydrogen transportation. These guidelines are designed 

to ensure a safe, efficient, and economically viable transition. A holistic, integrity-driven 

approach is emphasized, focusing on key aspects such as mechanical properties assessment, 

material testing, and customized integrity management. The mechanical properties assessment 

evaluates how hydrogen affects pipeline steel, particularly addressing risks like embrittlement 

and stress corrosion cracking (SCC). Robust material testing programs help identify 

vulnerabilities and assess the remaining service life of the pipelines, while tailored integrity 

management plans are developed to address each pipeline’s unique threats and operating 

conditions. 

Stress corrosion cracking (SCC) is identified as a critical threat, especially in pipelines 

carrying hydrogen, due to the interaction of tensile stress and corrosive environments. 

Effective mitigation requires a combination of mechanical, metallurgical, and environmental 

control measures. Mechanical strategies include minimizing stress concentrators, relieving 

fabrication stresses, introducing surface compressive stresses, reducing operating pressures, 
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and implementing regular nondestructive testing. Metallurgical strategies focus on selecting 

materials and optimizing alloy microstructures to resist SCC, as well as applying protective 

coatings to prevent corrosion and hydrogen ingress. Environmental measures involve 

controlling factors such as pH and moisture levels, applying electrochemical protection (e.g., 

anodic or cathodic protection), using corrosion inhibitors, applying organic coatings, and 

controlling operating temperatures to limit SCC risks. 

Successful conversion of pipelines to hydrogen service requires a comprehensive and tailored 

approach. Key recommendations include implementing regular inspection regimes and 

nondestructive testing, applying a combination of mechanical, metallurgical, and 

environmental measures to mitigate SCC risks, and engaging in thorough material testing and 

defect assessment programs to evaluate hydrogen’s impact on pipeline integrity. Additionally, 

practical guidelines and roadmaps, such as the Pipeline Repurposing Roadmap, should be 

provided to operators to guide them through the conversion process safely and economically. 

Ultimately, the success of the hydrogen economy depends on the ability to repurpose existing 

pipeline infrastructure while addressing key integrity threats, such as SCC. By following the 

proposed guidelines and control strategies, pipeline operators can ensure the safe and efficient 

transportation of hydrogen, optimizing pipeline performance in hydrogen service while 

mitigating associated risks. 
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Figure 14. Main control measures for SCC. 

3. Future work 

In the upcoming third year, our project will encompass a broad range of activities, including 

experimental work, component-to-system model formulation, the development of a long-term 

computational tool, and the consolidation of guidance and best practices. The project team 

will also focus on completing delayed tasks, particularly those related to hydrogen testing, to 

ensure the project remains on schedule and successfully addresses all remaining objectives. 

Our research and development plan for the upcoming year includes the following activities: 

• Continue developing a holistic Remaining Useful Life (RUL) model using the Failure 
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Assessment Diagram (FAD), based on existing standards and data, to formulate a 

comprehensive repurposing decision model as outlined in Task 2. 

• Advance the construction of hydrogen test experiments, adhering to the guidelines 

specified in Task 3. 

• Expand the multi-scale hydrogen simulation model, conduct simulations to analyze long-

term effects, and validate the experimental results, as described in Task 4. 

• Develop a comprehensive model that bridges component-level evaluations with system-

level assessments, aligning with the framework detailed in Task 5. 

• Summarize existing guidance and best practices, using our testing results to validate and 

refine them as necessary, as outlined in Task 6.1 and Task 6. 2..  
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